首页> 外文OA文献 >Privacy Preserving OLAP over Distributed XML Data: A Theoretically-Sound Secure-Multiparty-Computation Approach
【2h】

Privacy Preserving OLAP over Distributed XML Data: A Theoretically-Sound Secure-Multiparty-Computation Approach

机译:在分布式XML数据上保护OLAP的隐私:一种理论上合理的安全多方计算方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Privacy Preserving Distributed OLAP is becoming a critical challenge for next-generation Business Intelligence (BI) scenarios, due to the “natural suitability” of OLAP in analyzing distributed massive BI repositories in a multidimensional and multi-granularity manner. In particular, in these scenarios XML-formatted BI repositories play a dominant role, due to the well-know amenities of XML in modeling and representing distributed business data. However, while Privacy Preserving Distributed Data Mining has been widely investigated, the problem of effectively and efficiently supporting privacy preserving OLAP over distributed collections of XML documents, which is relevant in practice, has been neglected so far. In order to fulfill this gap, we propose a novel Secure Multiparty Computation (SMC)-based privacy preserving OLAP framework for distributed collections of XML documents. The framework has many novel features ranging from nice theoretical properties to an effective and efficient protocol, called Secure Distributed OLAP aggregation protocol (SDO). The efficiency of our approach has been validated by an experimental evaluation over distributed collections of synthetic, benchmark and real-life XML documents.
机译:隐私保护分布式OLAP在下一代商业智能(BI)场景中正成为一项关键挑战,这是因为OLAP在以多维和多粒度的方式分析分布式海量BI存储库中的“自然适用性”。特别是在这些情况下,由于XML在建模和表示分布式业务数据方面的众所周知的便利性,因此XML格式的BI存储库起着主导作用。但是,尽管对隐私保护分布式数据挖掘进行了广泛的研究,但是到目前为止,在实践中相关的有效和高效地支持在XML文档的分布式集合上有效地支持隐私保护OLAP的问题已被忽略。为了弥补这一差距,我们提出了一种新颖的基于安全多方计算(SMC)的隐私保护OLAP框架,用于XML文档的分布式集合。该框架具有许多新颖的功能,从良好的理论特性到有效且高效的协议,称为安全分布式OLAP聚合协议(SDO)。通过对合成的,基准的和实际的XML文档的分布式集合进行的实验评估,已经验证了我们方法的效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号